3,524 research outputs found

    Multi-scale coarse-graining of diblock copolymer self-assembly: from monomers to ordered micelles

    Full text link
    Starting from a microscopic lattice model, we investigate clustering, micellization and micelle ordering in semi-dilute solutions of AB diblock copolymers in a selective solvent. To bridge the gap in length scales, from monomers to ordered micellar structures, we implement a two-step coarse graining strategy, whereby the AB copolymers are mapped onto ``ultrasoft'' dumbells with monomer-averaged effective interactions between the centres of mass of the blocks. Monte Carlo simulations of this coarse-grained model yield clear-cut evidence for self-assembly into micelles with a mean aggregation number n of roughly 100 beyond a critical concentration. At a slightly higher concentration the micelles spontaneously undergo a disorder-order transition to a cubic phase. We determine the effective potential between these micelles from first principles.Comment: 4 pages, 4 figures, submitted to Phys. Rev. Lett

    Dielectric response of a polar fluid trapped in a spherical nanocavity

    Full text link
    We present extensive Molecular Dynamics simulation results for the structure, static and dynamical response of a droplet of 1000 soft spheres carrying extended dipoles and confined to spherical cavities of radii R=2.5R=2.5, 3, and 4 nm embedded in a dielectric continuum of permittivity Ï”â€Č≄1\epsilon' \geq 1. The polarisation of the external medium by the charge distribution inside the cavity is accounted for by appropriate image charges. We focus on the influence of the external permittivity Ï”â€Č\epsilon' on the static and dynamic properties of the confined fluid. The density profile and local orientational order parameter of the dipoles turn out to be remarkably insensitive to Ï”â€Č\epsilon'. Permittivity profiles Ï”(r)\epsilon(r) inside the spherical cavity are calculated from a generalised Kirkwood formula. These profiles oscillate in phase with the density profiles and go to a ``bulk'' value Ï”b\epsilon_b away from the confining surface; Ï”b\epsilon_b is only weakly dependent on Ï”â€Č\epsilon', except for Ï”â€Č=1\epsilon' = 1 (vacuum), and is strongly reduced compared to the permittivity of a uniform (bulk) fluid under comparable thermodynamic conditions. The dynamic relaxation of the total dipole moment of the sample is found to be strongly dependent on Ï”â€Č\epsilon', and to exhibit oscillatory behaviour when Ï”â€Č=1\epsilon'=1; the relaxation is an order of magnitude faster than in the bulk. The complex frequency-dependent permittivity Ï”(ω)\epsilon(\omega) is sensitive to Ï”â€Č\epsilon' at low frequencies, and the zero frequency limit Ï”(ω=0)\epsilon(\omega=0) is systematically lower than the ``bulk'' value Ï”b\epsilon_b of the static primitivity.Comment: 12 pages including 17 figure

    Structure and equation of state of interaction site models for disc-shaped lamellar colloids

    Full text link
    We apply RISM (Reference Interaction Site Model) and PRISM (polymer-RISM) theories to calculate the site-site pair structure and the osmotic equation of state of suspensions of circular or hexagonal platelets (lamellar colloids) over a range of ratios of the particle diameter over thickness. Despite the neglect of edge effects, the simpler PRISM theory yields results in good agreement with the more elaborate RISM calculations, provided the correct form factor, characterizing the intramolecular structure of the platelets, is used. The RISM equation of state is sensitive to the number of sites used to model the platelets, but saturates when the hard spheres, associated with the interaction sites, nearly touch; the limiting equation of state agrees reasonably well with available simulation data for all densities up to the isotropic-nematic transition. When properly scaled with the second virial coefficient, the equations of state of platelets with different aspect ratios nearly collapse on a single master curve.Comment: 10 Pages, 11 Figures, Typesetted using RevTeX

    A multi-blob representation of semi-dilute polymer solutions

    Full text link
    A coarse-grained multi-blob description of polymer solutions is presented, based on soft, transferable effective interactions between bonded and non-bonded blobs. The number of blobs is chosen such that the blob density does not exceed their overlap threshold, allowing polymer concentrations to be explored deep into the semi-dilute regime. This quantitative multi-blob description is shown to preserve known scaling laws of polymer solutions and provides accurate estimates of amplitudes, while leading to orders of magnitude increase of simulation efficiency and allowing analytic calculations of structural and thermodynamic properties.Comment: 4 pages, 4 figure

    On the Nullity Number of Graphs

    Full text link
    The paper discusses bounds on the nullity number of graphs. It is proved in [B. Cheng and B. Liu, On the nullity of graphs. Electron. J. Linear Algebra 16 (2007) 60--67] that η≀n−D\eta \le n - D, where η\eta, n and D denote the nullity number, the order and the diameter of a connected graph, respectively. We first give a necessary condition on the extremal graphs corresponding to that bound, and then we strengthen the bound itself using the maximum clique number. In addition, we prove bounds on the nullity using the number of pendant neighbors in a graph. One of those bounds is an improvement of a known bound involving the domination number

    Kinetic models of ion transport through a nanopore

    Full text link
    Kinetic equations for the stationary state distribution function of ions moving through narrow pores are solved for a number of one-dimensional models of single ion transport. Ions move through pores of length LL, under the action of a constant external field and of a concentration gradient. The interaction of single ions with the confining pore surface and with water molecules inside the pore are modelled by a Fokker-Planck term in the kinetic equation, or by uncorrelated collisions with thermalizing centres distributed along the pore. The temporary binding of ions to polar residues lining the pore is modelled by stopping traps or energy barriers. Analytic expressions for the stationary ion current through the pore are derived for several versions of the model, as functions of key physical parameters. In all cases, saturation of the current at high fields is predicted. Such simple models, for which results are analytic, may prove useful in the study of the current/voltage relations of ion channels through membranes

    Statistically derived contributions of diverse human influences to twentieth-century temperature changes

    Full text link
    The warming of the climate system is unequivocal as evidenced by an increase in global temperatures by 0.8 °C over the past century. However, the attribution of the observed warming to human activities remains less clear, particularly because of the apparent slow-down in warming since the late 1990s. Here we analyse radiative forcing and temperature time series with state-of-the-art statistical methods to address this question without climate model simulations. We show that long-term trends in total radiative forcing and temperatures have largely been determined by atmospheric greenhouse gas concentrations, and modulated by other radiative factors. We identify a pronounced increase in the growth rates of both temperatures and radiative forcing around 1960, which marks the onset of sustained global warming. Our analyses also reveal a contribution of human interventions to two periods when global warming slowed down. Our statistical analysis suggests that the reduction in the emissions of ozone-depleting substances under the Montreal Protocol, as well as a reduction in methane emissions, contributed to the lower rate of warming since the 1990s. Furthermore, we identify a contribution from the two world wars and the Great Depression to the documented cooling in the mid-twentieth century, through lower carbon dioxide emissions. We conclude that reductions in greenhouse gas emissions are effective in slowing the rate of warming in the short term.F.E. acknowledges financial support from the Consejo Nacional de Ciencia y Tecnologia (http://www.conacyt.gob.mx) under grant CONACYT-310026, as well as from PASPA DGAPA of the Universidad Nacional Autonoma de Mexico. (CONACYT-310026 - Consejo Nacional de Ciencia y Tecnologia; PASPA DGAPA of the Universidad Nacional Autonoma de Mexico

    An oil pipeline design problem

    Get PDF
    Copyright @ 2003 INFORMSWe consider a given set of offshore platforms and onshore wells producing known (or estimated) amounts of oil to be connected to a port. Connections may take place directly between platforms, well sites, and the port, or may go through connection points at given locations. The configuration of the network and sizes of pipes used must be chosen to minimize construction costs. This problem is expressed as a mixed-integer program, and solved both heuristically by Tabu Search and Variable Neighborhood Search methods and exactly by a branch-and-bound method. Two new types of valid inequalities are introduced. Tests are made with data from the South Gabon oil field and randomly generated problems.The work of the first author was supported by NSERC grant #OGP205041. The work of the second author was supported by FCAR (Fonds pour la Formation des Chercheurs et l’Aide à la Recherche) grant #95-ER-1048, and NSERC grant #GP0105574

    Models of electrolyte solutions from molecular descriptions: The example of NaCl solutions

    Full text link
    We present a method to derive implicit solvent models of electrolyte solutions from all-atom descriptions; providing analytical expressions of the thermodynamic and structural properties of the ions consistent with the underlying explicit solvent representation. Effective potentials between ions in solution are calculated to perform perturbation theory calculations, in order to derive the best possible description in terms of charged hard spheres. Applying this method to NaCl solutions yields excellent agreement with the all-atom model, provided ion association is taken into account.Comment: 4 pages, 5 figure
    • 

    corecore